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QUASI-SLENDER BODY THEORY FOR SLOWLY OSCILLATING 
BODIES OF REVOLUTION IN SUPERSONIC FLOW 

S U M M A R Y  

An analysis is presented which accounts for body shape and Mach number 
dependence of the aerodynamic forces on slowly oscillating pointed bodies of revo- 
lution in supersonic flow. 
potential is expanded in an elementary fashion for small radial distances from the 
body. This expansion is equivalent to the Adams-Sears expansion technique using 
Laplace o r  Fourier transforms. Analytical closed-form expressions for the sta- 
bility derivatives are obtained. These results a r e  valid to second-order in te rms  
of Mach number and body thickness ratio. 

By using body-fixed coordinates, the first order velocity 

Three specific body shapes are analyzed in detail: a cone, a convex 
parabolic ogive, and a concave parabolic ogive. Numerical results for the four 
stability derivatives C 

illustrate their dependence on Mach number and body thickness ratio. 
sons with other theories are given, and the range of validity of the present results 
is discussed. Comments on application of quasi-slender -body theory to other body 
shapes are made. 

, and C + C are presented to 

Compari- 

M .  M 
cl CY q 

' C M  YCN . + %  
NcY CY CY 

INTRODUCTION 

For the calculation of static and dynamic stability characteristics of large 
rocket vehicles in the high dynamic pressure portion of the ascent, which is usually 
the low supersonic flow regime, there exists a need for an easy-to-apply theoreti- 
cal method that will  show explicitly the effects of Mach number and body geometry. 
Munk's well-known slender -body concept [ I] and its generalization to unsteady flow 
[2]  are often found to be too inaccurate. Consequently, in recent years  many in- 
vestigators have tried to develop more accurate methods by either seeking a solu- 
tion to the full linearized potential equation [ 3-11] or by attempting to solve the 
nonlinear equation [ 12-16]. 

Extensions of the Karman-Moore method [ I71  to the case of slowly os- 
cillating bodies of revolution are given in References 8 ,  9 and 10. A similar ex- 
tension of the Oswatitsch-Erdmann procedure [ 181 is proposed in Reference 11. 
References 12 , 13 and 16 consider linearized time dependent perturbations about 
the nonlinear axisymmetric flow. The resulting equations are then solved by the 



method of characteristics. All of these approaches lead to purely numerical pro- 
cedures and require a substantial amount of preparatory work. 

A quite different nonlinear approach was  developed by Revell [ 141 which is 
an extension of Lighthill's second-order slender-body theory [ 193 to slowly oscil- 
lating bodies of revolution. 
analytical closed-form expressions for stability derivatives. However , the eval- 
uation becomes rather unwieldy for bodies with arbitrary meridian profiles. 

This method makes possible the determination of 

This report presents a linearized approach which allows the derivation of 
closed-form expressions for the stability derivatives. By using body-fixed coor - 
dinates, a solution to the first-order potential equation is sought. For this pur- 
pose the velocity potential, a s  given by Dorrance 131, is expanded in an elemen- 
tary fashion for small radial distances from the body. 
equivalent to the iterative method of Adams-Sears 1201 so that the doublet strength 
may be obtained in closed form. 
zation over slender -body theory, which is the first te rm in the expansion and 
hence prompts the name "quasi-slender body theory. I '  The higher order terms 
represent the dependence of the solution on Mach number and body geometry. 

Such an expansion is 

This procedure provides a consistent generali- 

The present work considers only the next higher order term beyond 
slender-body theory, i. e. , only two te rms  in the Adams-Sears iteration. One 
of the chief aims in the derivation given here is to achieve "consistency" in the 
sense that all so-called second-order terms which arise from the velocity po- 
tential and pressure coefficient will be included in the stability derivatives. 

To date, for bodies of revolution, the Adams-Sears method has been 
applied to only one configuration, the slowly oscillating convex parabolic ogive 
body, in transonic flow by Landahl [ 6 ]  and supersonic flow by Zartarian-Ashley 
[7]. In both of these treatments the aerodynamic forces were obtained by 
'linearized" momentum considerations. 

The expressions for stability derivatives which are worked out in this 
report are applicable to smooth slender pointed -nose bodies of revolution with 
arbitrary meridian profile. Three numerical examples are given to illustrate 
the effects of Mach number, differing body geometry and thickness ratio. 
These examples are a cone, a convex parabolic ogive, and a concave parabolic 
ogive. Several comparisons of the present results with other theories are pre- 
sented also. 

In the following treatment, dimensionless variables are used with dis- 
tances referred to body length, . t :g,  velocities to free stream speed, W , 
velocity potentials to product of body length with free stream speed, and time 
to body length divided by free stream speed. Starred quantities a re  dimen- 
sional , whereas unstarred quantities are dimensionless. 

2 



PROBLEM FORMULATION 

Potential Equation 

Consider a harmonically pitching pointed body of revolution which is set 
in a steady uniform supersonic stream. Both the amplitude and frequency of 
oscillation are assumed to be small. A body-fixed cylindrical coordinate sys- 
tem, a s  shown in Figure I, is used to describe the problem. The body is re- 
quired to be sufficiently slender so that shock wave effects a re  negligible. 
Therefore, a velocity potential Q (x ,  r ,  0,  t )  exists. Following Revel1 [ 141 
a body-fixed perturbation potential Qi (x ,  r , 8 , t )  may be defined by 

Q (x, r ,  e ,  t) = (x-a) cos 6 + r sin 6 cos 0+Qi ( x , r ,  e , t )  , 

where 

The velocity components in the (x ,  r ,  0)  directions a re  then given by 

Nonlinear terms in the potential equation will  be neglected in the following 
treatment. 
unsteady equation. 

With this restriction Qi is considered to be governed by the first-order 

For steady flow the superiority of the first-order equation over the linearized 
equation has been established by Van Dyke [ 2 13. For unsteady flow , to the 
authors' knowledge, this point has not been established so that the superiority 
of equation (3 )  must be taken as tentative. 

In this treatment body-fixed axes have been chosen because the tangency 
condition and pressure coefficient are less cumbersome to apply than in a wind- 
fixed coordinate system. The wind-fixed system is complicated by the zero angle- 
of-attack solution entering into the cross-flow boundary conditions through the 
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Taylor series transferral  of the tangency condition from the pitching body to the 
mean body [ 221. In a body-fixed system this complication is absent. 

For small  amplitude and low frequencies, following C .  Heinz ,[231, the 
perturbation potential may be written 

~ ( x , r , e , t )  = Cp(x,r) + [ 6 $ ( x , r )  + 6 A ( x , r ) ]  cos  8, 

where d, = (ik6) R, Cp is the steady-state zero angle-of-attack perturbation po- 
tential, and $ and h are the in-phase and out-of-phase cross-flow perturbation 
potentials , respectively . 

Boundary Conditions 

Upstream of the body all perturbations vanish; hence, 

In addition, the flow must be tangent to the body, which in body-fixed coordi- 
nates may be expressed as 

at  r = R(x) .  

4 = R' (x )  (1 + Cpx) r 

'r 

A r 

+x 
=. -1 + R' (x) 

= - [ (x-a) + R(x)  R'(x) 3 + R ' ( x )  Ax 

(7) 

These are the so-called exact tangency conditions for a non-deforming body. 

Normal Force and Pi tching Moment 

The normal force and pitching moment, referred to the body base area 
&".: (-f* ) = n e2 1:: and body length 1:: , are given by the relations 

i n  
c = -  s s R C  (xyR,8 , t )  c o s 8  d e  dx 

N Q(i)  P 

4 



and 
i n  

- J (x-a) R C  (x,R,B, t )  cos8  d 8 d x  
'M - Q (1) P 

I n  

Q (i) P 
+ -  J R 'R 'C  (x,R,O,t)  c o s 8  d e d x ,  (9) 

where the pitching moment is taken about an axis at x = a. 
the moment coefficient is the contribution of forces parallel to the body axis. 

The last integral in 

Analogous to the expansion of the perturbation potential d, the pressure 
coefficient may be expanded for small  frequency and amplitude: 

Then the normal force and pitching moment reduce to 

i I 

and C a re  just the coefficients 
Mi 

The flutter derivatives CN , ' 'N. 
6 6 6 

of 6 and 6 m equations (11) and ( 1 2 ) .  

Expansion of t h e  P ressu re  Coeff icient 

The exact isentropic pressure coefficient relation is derived from 
Bernoulli's equation for unsteady flow [ 14, 241 : 

1 

c =  YM 2 (G -1) y 
P 

5 



where 

G = 1 + y-i 2 M 2 [ l - ( u 2 + v 2 + ~ z + 2 i 2  7 ) I  

and subscript T denotes partial differentiation with respect to time in a wind- 
fixed coordinate system. Revell [ i4 ]  has shown that for small  angles of pitch 
the partial derivative with respect t o  T may be expressed in t e rms  of body- 
fixed variables by 

. (15) - a a 
a 7  a t  ax  + i (x-a) [cos e ar r a e  - 6 r c o s 0  - a - a 

By using equation ( 15) together with equation (2) ,  which relates the velocity com- 
ponents to  the perturbation potential, and equation (4) for the expansion of the 
perturbation potential for small amplitude and low frequencies , G becomes 

G = i - [Fo + 2  ( 6 F i +  i F 2 )  cos  6 1 ,  (16)  2 

where 

Fo = 2 @ + @ '  + @ '  x x  r 

The pressure coeffici.ent may be expanded using the binomial theorem. 
first-order in 6 and 6, this gives 

To 

6 

We now put the exact tangency conditions, equation ( 7 ) ,  into the definitions of 
Fi and F2, then substitute into equation (17) and retain te rms  up through second- 
order in Mach number and body thickness. By comparison of this result with 
equation ( i o )  , we obtain the following expressions for the in-phase and out-of- 
phase lifting pressure coefficients evaluated at the body surface r = R(x) .  



J 

These expressions are consistent with the order 
will be solved. 

SOLUT I ON OF THE POTENT 

to which the potential equation 

A L  EQUATION 

Assuming harmonic time dependence , 
A ikt 

the cross  -flow potential @ (x ,  r , e )  satisfies 

(x,r,O,t) = @(x,r)  + @ ( x , r , e )  - e 
A 

The well known dipole solution [25] is 

1 -ip(x-[) cos K p 

P 
A COS e a 

27r a r  @ ( x , r , e )  = - 
dipole 

where 

p = 4 ( x - < j 2 -  p 2 r 2  

K = T  

I-1 =-p2 

k M  

k M2 

By distributing such oscillating dipoles along the x-axis, we obtain the 
general solution for an oscillating body of revolution, 

7 
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where F( t )  is the dipole distribution which must be determined from the boundary 
conditions at the body surface. 

For a slowly oscillating body of revolution, we may expand this solution 
with respect to  the frequency and retain only te rms  up through the first power of 
the frequency; thus, 

@ ( x , r , e )  = - - (24) 
COS e . 2 i - p r  F ( E ) r i  - i p ( x - 8 1  d[ . A 

0 J ( x - 0 2  - p2 r2 
27r  a r  

Dorrance [3 ]  used this form of the potential together with the slender body doublet 
strength to obtain stability derivatives for pointed bodies in supersonic flow. 
ever,  as pointed out by Wles [26] , such a procedure is inconsistent and unneces- 
sarily complicated. 
dient form for the potential which will show the essential equivalence between 
Dorrance's method and the Adams-Sears approach 120) and thus provide a con- 
sistent means of improving on slender body theory. 

How- 

Proceeding from equation (24) we wi l l  derive a more expe- 

For this purpose, we expand equation (24)  for small  distances from 
the body axis. Equation (24)  can be separated into a steady part ,  

which represents the potential of a body of revolution at small angle-ofattack, 
and an unsteady part ,  

The angle-of-attack potential can be expanded by a slight modification of 
F. Keune 's method for the zero angle-of-attack potential [ 27). Integrating first 
the square root expression and taking the partial differentiation outside the inte- 
gral ,  we obtain for the zero angle-of-attack potential 

x-pr  
= -  - J  

0 

a 
a x  F( t )  In [x-5 + J ( x - 5 )  - p 2  r2 ] dC; + F (x-pr) In ,Br , 

8 



Expanding this expression for small P gives the familiar slender-body 
potential: 

a 
0 

To obtain the next higher approximation, we repeat this process twice 
for the difference between the exact potential @ ( x , r )  and its first  approximation 

( 1 )  @ ( x , r ) ;  thus, 

+ ( x , r )  - @(') (x ,r )  = - a r - p r  
F ( [ ) l n  [ x - [ + ' d ( x - a 2  - p 2 r 2  ] d[ 

0 
a x  

a + F ( x - p r )  In p r  - F ( x )  In p r  + ax f F ( [ )  In [2 (x -2 ) ]  d [  
0 

} d [  
F ' ( [ )  ax = -J (x- 2) In [x-t + 4;x-t)' - p2 r2 3 - J (x -1 ) '  - p2 r2 

a X 

0 

a {  

x-pr  

0 

+ F (x-pr) In p r  - F(x)  In p r  + F ' (  [) ax [ (x-[) In 2(x-[) - (x -<) I  d[ 

- - -  (x-[) In [x- [ + J(x-[)~ - p2 r 2 ]  - d ( x -  g 2  - p2 r2  
0 

a x  

+ F'(x-pr)  p r  In p r  + F (x-Or) In pr  - F (x)  In p r  

+ F(x-p r )  In p r  - F ( x )  1npr  

a [ y2 In 2(x-5) - 4 
X a 

ax  + - j- F'(0 ax 
0 

9 
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+ F' (x-pr) p r  In p r  + F (x-pr) In pr  - F (x) In pr 

Using the following expansions, 

and 

we obtain from equation (28)  the following second approximation 

Inserting this result  into equation (25) gives, after differentiation with respect to 
r ,  the following near -field approximation for the angle -of -attack potential: 



a 
The unsteady part ,  equation ( 2 8 )  , likewise can be approximated by trans- 

forming i t  f irst  into [28] 

i p  p2 r COS e - - -  
27r 

This latter expression 
and in the upper limit 

x -pr 3 s  a2 
0 

F(( ) cosh-I ts) d[ . 

can be easily approximated for small r in the integrand 

Therefore , the potential of the slowly oscillating body of revolution in 
supersonic flow, equation ( 2 4 )  , may be written in the following form: 

where 

ikM2 pr 
2 - 7 F'"([)  In (x-6) d[] + x- r [  F ' ( x )  In 

0 
X 

This result also could have been obtained by applying Fourier or  Laplace 
transform techniques to the first -order potential equation and expanding the 
transformed solution for small distance from the body [7]. The present approach 
is more elementary and shows at the same time the essential equivalence between 
Dorrance ' s  approach [ 31 and the Adams-Sears method [ 201. 

Terms of orders  like p4 E In p E have been neglected in equation (31) so 
that it is consistent with the expressions given earlier for the pressure coefficient. 

For convenience we now define a reduced potential x (x,  r )  which follows 
from equations (4 )  and (31) : 

I1  



The doublet distribution F (x) , as mentioned previously , is determined 
from the tangency condition at the body. Using equation (32) together with 
equation ( 7 )  , we may write the exact tangency condition as follows: 

where for a rigid body 

2Tr ( 34) 

The product te rm in the tangency condition contributes 0 ( c3) to the potential 
function and hence , for consistency, must be retained. 

When we apply equation (33)  , an integral equation for the doublet distribu- 
tions F (x)  is obtained. However , to  try t o  solve this integral equation exactly is 
inconsistent with the order to which the potential is valid. The correct procedure 
is to  apply the iterative method of Adams-Sears [20] .  
to which the potential function, equation ( 31) , is valid, the Adams-Sears iteration 
consists of two terms only. Therefore, the reduced potential x may be written 

In keeping with the order 

and likewise for the doublet distribution, 

In equations ( 3 5 )  and ( 3 6 ) ,  the first term is the slender-body value, while the 
second term represents a second-order correction due to Mach number and 
thickness effects. Substituting equations (35)  and ( 3 6 )  into equations ( 31) and 
(32 )  and equating terms of like order gives 

The body center-line motion function W (x)  , following the Adams-Sears method, 
may be written 

12 



Notice that W(') (x) represents the usual linearized rigid body motion, whereas 

W(2)  (x) represents a higher-order term which enters through oscillation of the 
body-fixed coordinates and is of the same order as the product term in the tan- 
gency condition. Substitution of equations ( 3 8 )  and ( 3 5 )  into equation (33 )  and 
equating terms of like order gives the first- and second-order tangency relations: 

Explicit forms for the first - and second-order doublet distributions follow 
immediately upon application of the tangency relations, equation ( 3 9 ) .  

(x) = 2Q(x) 6 + 2 (x-a) Q(x )6  

13 



After some straightforward calculation using equations (40) and (37) we arr ive 
at the following expressions for the in-phase and out-of-phase c ross  flow pertur- 
bation potentials valid to second -order: 

v (x) = p2 Q"(x)  
R 27r 

X 

y (x) = p2 471 [ Q"(x) + 2Q"(O) In x + 2 Q f l ' (  E) In (x-t) d t ] 
0 R 

I 
p2 { 4 [(x-a) Q ( x ) ]  -2aQ"(O)  1 n x  

dx 1- (x) = 471 I 

14 



STAB I LlTY DER I VAT I VE CALCULAT I ON S 

With reference t o  equations (11) and (12) , the four flutter derivatives are 
given by 

- - -  * 
c =(+) &(I) 

:(~-a) R C  dx 

6 - 0  M6 

The flutter derivatives are related to  the stability derivatives by (cf. pp. 
16-17 of Reference 24) 

= CN 
6 Q 

cN 

C - - CM + C M  

6! 

15 



Numerouls researchers  in the past [ 3 , 4 , 51 have attempted to  compute 
W c h  number and thickness effects on stabiliw derivatives by considering only 
the linearized form of the pressure coefficient: 

at r = R ( x ) .  I 
However, such a procedure is iiicomplete because the various quadratic terms 
hi equations (18) and ( i9 )  together with the terms in the potential arising from 
the second-order tangency coridition are all of comparable order to the thickness 
and Mach number terms in equation (48).  

To obtain all of the second-order te rms  we evaluate the pressure coef- 
ficient derivatives at r = R(x)  as follows: 

c = -  

pi 

' +  ( 2 ) + 2 [ p2 A:') + M2 I I ,  c = - 2 ( h x +  +) + R ( x ) ]  @x 
p2 

I - 2 Rt2 (x)  [c - 5) 1") - M2 - R (x) 
X 

J 
Needed in the evaluation of C and C are the slender-body potentials 4 (1) , 

p2 
$(I) and h (1) . 

(49) 

16 



For conciseness we will evaluate the stability derivatives with the pitch- 
axis located at the nose of the body, i. e., at a = 0. To compute the stability 
derivatives for ariy other pitch-axis location, we simply make use of the follow- 
ing axis transfer relations: 

- + a  CN - ‘M 
CY Q a! 

cM 
0 

where the subscrip’i 0 denotes the derivatives calculated for the pitch-axis at 
the nose. 
of CM , etc., plus the following easily proved relation: 

The above transfer relations follow immediately from the definitions 

Q 

Before giving the stability derivatives, we first derive expressions for 
the rate of change with x of the in-phase and out-of-phase normal iorce coefficients. 
These are given by 

Appropriate substittutioii into equation ( 49) gives 

17 



where I 

and 

18 



X 

- 2 Q " ( 0 )  In x - 2 s & " ' ( E )  In (x-$) d[ ] 
0 

+ ' [xQlz(x) ]  
n 

In the evaluation of the second integral in the moment coefficient, i. e. , the 
moment of forces parallel to the body axis, the slender-body pressure coeffi- 
cient suffices. Thus, 

C (I) (x,R) = - 4 R'(x) (59) 

Performing the required integrations indicated in equations (43) through 
(46) with a = 0 ,  we arrive at the following expressions for the stability deriva- 
tives for pointed-nosed bodies of arbitrary smooth profile: 
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Q"'([) l n  (x-[) d[ dx 
i x  

0 0  
- 2 J J k 2 Q ( x )  + 
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i x  \ 

1 i x  

0 0  
- 2 s x  Q1  (x) & ' I ( [ )  In (x-5) dt; dx 
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NUMERICAL RESULTS AND DISCUSSION 

Application to Specific Body Shapes 

To illustrate the effect of differing body geometry on the stability 
derivatives, numerical examples were worked out for three typical pointed 
bodies of revolution. These are a s  follows: 

I. Right-circular cone, R(x)  = E X  

2. Convex parabolic ogive, R(x)  = E x (2-x) 

E X  
3. Concave parabolic ogive, R(x )  = 2 ( l+x)  . 
These bodies were  chosen, first, because they possess the three basic 

types of curvature, and second, to determine whether a similarity exists be- 
tween the geometric effects for bodies of revolution and low aspect ratio wings. In 
addition, other theoretical results are available for the cone [29] and convex 
ogive [7] with which to make comparisons. 

The actual evaluation of the expressions for stability derivatives given 

Even for the simple bqdy profiles considered here the 
in the previous section is straightforward , although tedious because of the many 
integrals which occur. 
number of such integrals is very large,  so  that the main problem is one of book- 
keeping. Some simplification is to be had in the present case because all of the 
integrals reduce to  four basic types, which are listed, together with their inte- 
gration formulas, in Table I. All required numerical values of the generalized 
formulas of Table I are listed in Table II. 

The final numerical formulas as functions of Mach number and body 
fineness ratio for the three bodies are given in the Appendix. The present 
theory can be applied to other smooth bodies, and analytical integration is pos- 
sible, provided the body area distribution Q (x) is a factorable polynomid. This 
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restriction arises in the treatment of integrals containing In Q(x) . 
tical standpoint , the labor involved wodd be considerable in treating any profile 
whose radius distribution R(x)  is of higher degree than a quadratic. 

From a prac- 

Discussion of Results 
Numerical results for the various stability derivatives according to the 

present theory were computed for the body shapes described above for three values 
of body fineness ratio,  E = 0, 0.05 and 0.10. 
slender-body theory. A Mach number range from I. 2 to 3 . 0  was investigated, and 
a pitch axis location of a = 0.4 was chosen. 

The case E = 0 corresponds to pure 

Plots of C are presented in Figures 2 through 4, C in Figures 5 and 
CY 

M 
Q! 

N 

6 ,  CN . + CN in Figures 7 through 9, and C + C in Figures 10 and 11. 
n/I& M 

CY q 4 
These piots show a significant influence of Mach number and body thickness 011 

the four stabiliQ derivatives. 
first-order theory of Tobak-Wehrend [29] is obtained as shown in Figures 2 and 
7. In fact, it can be demonstrated by series expansion of equations (40) , (45) and 
(50) of Reference 29 that the present theory, equations ( A i )  - (A2) of the Appen- 

For the cone, excellent agreement with the "exact" 

Md + 
dix, results by retaining second-order terms only. No plots of C or C 

CY 
M 

are given for the cone because the forces and moments are related to  each 
cl 

cM 

other by the simple exact relations [29 J for a = 0 

2 
3 

= - -  (I + E 2 )  CN 
cM 

Q! a! 

In Figures 3 through 6 the in-phase derivatives C and C for the two 

ogives as given by quasi-slender body theory are compared with an exact method 
of characteristics solution [30] which superposes a small angle-of-attack per - 
turbation on the nonlinear axisymmetric flow. is good 

up to a value of the hypersonic similarity parameter 2 M E  of 0.3. Fair agree- 
ment is obtained for the pitching moment coefficient slope CM . Better insight 

NQ! Ma! 

The agreement for C 
a! N 

CY 

24 



.. . 

into the behavior of these derivatives is gained by comparing the local normal force 
distribution d C N a / d x  of the two theories. These comparisons are given for vari-  
ous Mach numbers and fineness ratios in Figures i X  through 19. 

Referring to Figures 10 and ii for pitch damping, we observe the following 
For a given set of governing parameters,  the concave body, the cone behavior. 

and the convex body (in that order) are progressively more stable. 
general, decreasing the body curvature increases the pitch damping, i. e. , 

Thus, in 

+ CM becomes more negative. This behavior is similar t o  the pitch 
q 

cM 
CY 

damping characteristics as a function of leading edge curvature of a thin low 
aspect ra t io  wing in transonic flow as shown by Landahl 1311. 

Three nonlinear studies for the oscillating cone are given in References 
14, 15 and 32. 
second-order slender-body theory of Lighthill. The analyses of Brong [ 151 
and Hsu [ 321, which are somewhat similar to  one another, are based on a 
time-deperident perturbation about the nonline r Taylor-Maccoll solution [ 331 . 
The results of References 14, 15 and 32 for Q CN o; + c N ~  for a c o n e  of i o -  

degree semi-apex angle a re  compared in Figure 20 with those of quasi-slender 
body theory and the first-order "exact" results of Tobak-Wehrend [ 2 9 ] .  The 
agreement between the present results and those of References 29, 15 and 32 
is remarkably good up to 2M E of about 0.75, whereupon quasi-slender body 
theory begins to  diverge sharply. 
theory is similar to the behavior of Revell's second-order theory. 
parison of the two with the "exact" first-order theory of Tobak-Wehrend, 
further support is given to Revell's conjecture that such trend reversals  indi- 
cate the breakdown of second-order theory, and by inference, the breakdown 
of quasi-slender body theory also. 

Revell's analysis [14] is an extension to unsteady flow of the 

0 

The reversal of trends in quasi-slender body 
By com- 

The theory of Zartarian-Ashley for slowly oscillating bodies of revolu- 
tion in supersonic flow [ 7 ] ,  as mentioned ear l ier ,  also uses the Adams-Sears 
procedure to solve for the doublet potential. Their aerodynamic forces a r e  
obtained by applying 'linearized" momentum considerations, whereas in the 
present analysis these forces a re  obtained by integration of the pressures  over 
the body surface. 
contain those of Reference 7 plus additional Mach number and body thickness 
terms. 

We observe that the present stability derivative results 

This disagreement, at least  in part, is attributable to  the use in 
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Reference 7 of the 'linearized" momentum relation which, analogous to  the use 
of the 'linearized" pressure coefficient, does not give all of the Mach number 
and body thickness terms. 

Finally, it should be noted that the present work is based upon an 
expansion of the cross-flow potential, equation (23),  with respect to frequency. 
Therefore, the results imply, in addition to the limitations already imposed 
by linearized theory, that 

k M < <  ( M -  I )  

which sets a n  upper limit to the frequency range and a lower limit to the Mach 
number range over which the results may be used. 

George C. Marshall Space Flight Center, 
National Aeronautics and Space Administration 

Huntsville, Alabama, November 24, 1965 
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TABLE I 

Integration Formula 

In ( a + b )  

1 
1 

~ 

v=l  vKV 

m+l  m+l 

m + l  + K- (In b - 

b 
where: K =  - - a f 0, b > 0, m rO a '  

, 1 1 1 2 0  I 
m+ I 

v=l  
- 

m + l  
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TABLE I1 

m 

1 

2 

3 

4 

5 

6 

7 

48 

I m B = J x ln(i-x) dx 
0 

m 

4 

i x  m n  
= s s  x 

0 0  
mn 5 In (x-t) d t d x  E 

m A m B 

-1 

3 
4 

11 
18 

25 
48 

- - 

- - 

- - 

137 
300 

- 

36 3 
980 

- - 

2283 
6720 

- 

m C 
~~ 

3 
2 1 n 2 -  - 2 

8 17 
- In  2 - -  3 9 

67 4 1 n 2 - -  24 

32 667 - l n 2 - -  5 150 

32 1332 
- 1 n 2 -  ~ 

3 180 

128 9319 -1n 2 -  - 
7 735 

74537 
32 In 2 - 3360 

. - . - 

m 
D 

1 
2 - - I n 2  

I 7 
- I n  2 - - 3 18 

1 1 - - I n  2 +  - 
4 12 

I 59 
:In 2 -  - 300 

1 3 - - I n  2 + - 
6 40 

1 37 9 - I n  2 - - 
7 2940 

I 1 07 - - I n  2 +  - 
8 1680 



m 

i 

2 

3 

4 

5 

. .  

TABLE I1 (Continued) 

n = O  

mn E 

n = i  

7 
32 

17 
i 00 

5 
36 

- - 

- - 

- - 

23 
i 96 

13 
i 28 

- - 

- 

n = 2  

61 
45 0 

i 
9 

83 
882 

47 
576 

- 

- - 

- - 

- - 

35 
48 6 

- 
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APPENDIX 

Numerical Formulas for Stability 

Derivatives of Cones, Convex 

Parabolic Ogives and Concave 

Parabolic Ogives 

Cone: R(x)  = E X  

= 2 - ( 2  + M2) c2 
a! 

cN 

Convex Parabolic -Offive: R(x)  = E x ( 2-x) .. 
= 2 . 0 +  8.0p21n - - I. 3333 M2 + 2.6667 

cN a! I P E  

- 0,4190 M2 + 3.2762 c2 I 
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EX 
Concave Parabolic Ogive: R ( x )  = - (l+x) 2 

c N = 2 * o [ (  - P2 4.0 In - 
CY 

1 
+ 5.8333 I E' 

J 

= - 1 . 4 8 3 3 +  In - - 5.1211 
P E  

9 CY 
cM 

+ 1.2699 M2 - 2.9577 E' 1 
- 27.8  2 (CNd +CN9), = 2.5167 - 

P E  

- 23.5935 

) '  I 2 In p - 13.0069 + 8.2113 c2 

P E  

P E  2 - 10.895,) + 4 .41551  e2 

5 1  

I S  
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